Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters

Database
Language
Document Type
Year range
1.
Health Place ; 77: 102889, 2022 09.
Article in English | MEDLINE | ID: covidwho-2004102

ABSTRACT

Tackling mental health has become a priority for governments around the world because it influences not only individuals but also the whole society. As people spend a majority of their time (i.e., around 90%) in buildings, it is pivotal to understand the relationship between built environment and mental health, particularly during COVID-19 when people have experienced recurrent local and national lockdowns. Despite the demonstration by previous research that the design of the built environment can affect mental health, it is not clear if the same influence pattern remains when a 'black swan' event (e.g., COVID-19) occurs. To this end, we performed logistic regression and hierarchical regression analyses to examine the relationship between built environment and mental health utilising a data sample from the United Kingdom (UK) residents during the COVID-19 lockdown while considering their social demographics. Our results show that compared with depression and anxiety, people were more likely to feel stressed during the lockdown period. Furthermore, general house type, home workspace, and neighbourhood environment and amenity were identified to have significantly contributed to their mental health status. With the ensuing implications, this study represents one of the first to inform policymakers and built environment design professionals of how built environment should be designed to accommodate features that could mitigate mental health problems in any future crisis. As such, it contributes to the body of knowledge of built environment planning by considering mental health during the COVID-19 lockdown.


Subject(s)
COVID-19 , Built Environment , COVID-19/epidemiology , Communicable Disease Control , Humans , Mental Health , Residence Characteristics
2.
Chem Eng J ; 427: 131686, 2022 Jan 01.
Article in English | MEDLINE | ID: covidwho-1347523

ABSTRACT

Fast and effective detection of epidemics is the key to preventing the spread of diseases. In this work, we constructed a dual-wavelength ratiometric electrochemiluminescence (ECL) biosensor based on entropy-driven and bipedal DNA walker cycle amplification strategies for detection of the RNA-dependent RNA polymerase (RdRp) gene of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The entropy-driven cyclic amplification reaction was started by the SARS-CoV-2 RdRp gene to generate a bandage. The bandage could combine with two other single-stranded S1 and S2 to form a bipedal DNA walker to create the following cycle reaction. After the bipedal DNA walker completed the walking process, the hairpin structures at the top of the DNA tetrahedrons (TDNAs) were removed. Subsequently, the PEI-Ru@Ti3C2@AuNPs-S7 probes were used to combine with the excised hairpin part of TDNAs on the surface of Au-g-C3N4, and the signal change was realized employing electrochemiluminescence resonance energy transfer (ECL-RET). By combining entropy-driven and DNA walker cycle amplification strategy, the ratiometric ECL biosensor exhibited a limit of detection (LOD) as low as 7.8 aM for the SARS-CoV-2 RdRp gene. As a result, detecting the SARS-CoV-2 RdRp gene in human serum still possessed high recovery so that the dual-wavelength ratiometer biosensor could be used in early clinical diagnosis.

3.
ACS Appl Mater Interfaces ; 13(17): 19816-19824, 2021 May 05.
Article in English | MEDLINE | ID: covidwho-1199255

ABSTRACT

The detection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is crucial for preventing and controlling infectious diseases and disease treatment. In this work, a Au@Ti3C2@PEI-Ru(dcbpy)32+ nanocomposite-based electrochemiluminescence (ECL) biosensor was rationally designed, which realized sensitive detection of the RNA-dependent RNA polymerase (RdRp) gene of SARS-CoV-2. In addition, a DNA walker was also used to excise the hairpin DNAs under the action of Nb.BbvCI endonuclease. Furthermore, model DNA-Ag nanoclusters (model DNA-AgNCs) were used to quench the initial ECL signal. As a result, the ECL biosensor was used to sensitively detect the SARS-CoV-2 RdRp gene with a detection range of 1 fM to 100 pM and a limit of detection of 0.21 fM. It was indicated that the ECL biosensor had a great application potential for clinical medical detection. Furthermore, the DNA walker amplification also played a reliable candidate strategy for other detection methods.


Subject(s)
Biosensing Techniques/methods , Nanocomposites/chemistry , SARS-CoV-2/genetics , DNA, Viral/genetics , RNA-Dependent RNA Polymerase/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL